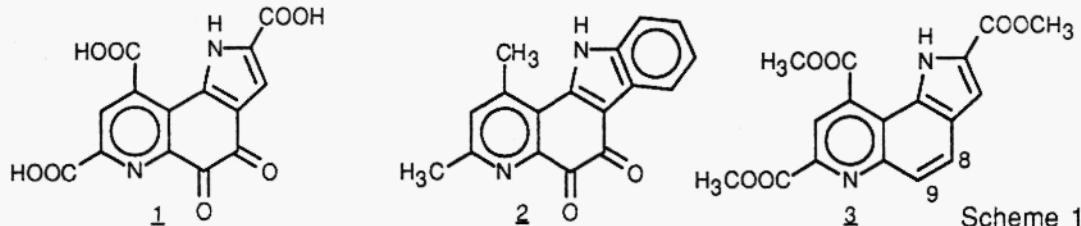
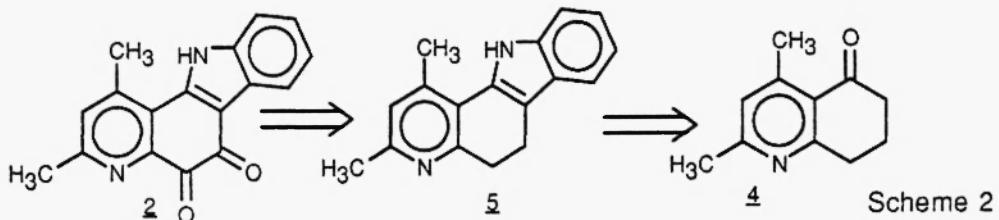


OXIDATION OF INDOLO-QUINOLINE STRUCTURES

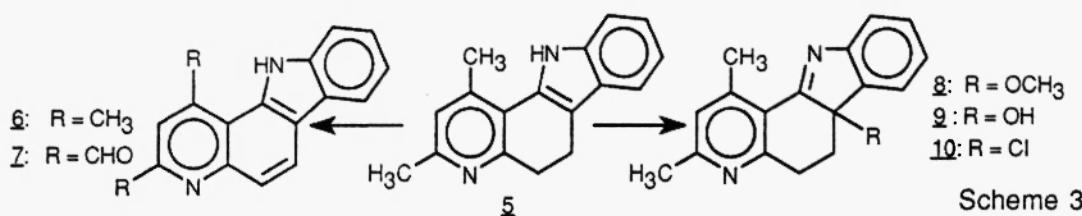

R. Barret ^{*1}, A. Belaissaoui ², Z. M. Du², T. Mulamba², J.Y. Laronze², J. Levy².

1-Laboratoire de Chimie Thérapeutique- Faculté de Pharmacie, 8 Avenue Rockefeller, 69373 LYON Cedex 08 FRANCE. e-mail: barret@rockefeller.univ-lyon1.fr


2-UPRESA 6013, Faculté de Pharmacie, 51, rue Cognacq-Jay, 51100 REIMS FRANCE.

Abstract : Oxidation of new indolo-quinoline structures was studied. Herein, the use of a new oxidizing reagent, *eg* sodium perxenate, and other reagents (PIFA, tBuOCl) which lead to indolenin **8-10** from indolic compound **5** is described.

The copper amine oxydases constitute an important class of mammalian enzymes involved in endo- and xenobiotic metabolism. Some of them utilize an ortho-quinone cofactor to achieve transamination of primary alcohol to aldehyde.(1) This cofactor of the copper amine oxidases, a pyrroloquinoline quinone **1** (methoxatine, PQQ), was isolated from bacteria(2) and some analogous compounds were described. (3)



In this preliminary work, we planned to study the oxidation of compound **5** in the aim to synthesize an indolic analogue **2** of methoxatine **1**. The synthesis of this compound was based on the following retrosynthetic scheme:

The first step was an indolisation by the Fischer reaction from **4** (4) and phenylhydrazine, involving **5** (10,11-dihydro-2,4-dimethylpyrido[3,2-a]carbazole) in medium yield (45%). Oxidation of **5** by using Yonemitsu's conditions (DDQ-THF-H₂O) (5) did not give the 10-keto compound or the corresponding phenol, but **6** which was isolated in 55 % (scheme 3). The same product was obtained by several reagents (Pd-C, xylene, reflux temperature : 30%; Pd-C, decalin, reflux temperature : 26%; MnO₂, xylene, room temperature : 52%). An unusual reagent, *eg* sodium perxenate (Na₄XeO₆, 6H₂O) (6) in methanol-H₂O (4:1) (1.5 equivalent, reflux temperature, 5h) oxidized **5** into **8** (42%); the high resolution mass spectroscopy gave

a molecular formula corresponding to $C_{18}H_{18}N_2O$ and the mass spectroscopy revealed a loss of m/z 31 ($M^+ - MeO$) (hrms : $C_{17}H_{15}N_2$). The 1H -NMR exhibited a singlet ($\delta = 2.82$ ppm) and the ^{13}C -NMR gave a signal at δ 52.6 ppm. These data suggested the presence of a methoxy group; this compound is the 10a-methoxy-indolenin 8. The oxidation with PIFA (bis(trifluoroacetoxy)-iodobenzene) in CH_3CN-H_2O (7) lead to the product 6 (40%) and a by-product 9 (20%). The 1H -NMR of 9 exhibited a broad signal (δ 3.8 ppm) and the ir spectroscopy showed an absorbtion between 3050 and 3200 cm^{-1} , characteristic of a hydroxylic group. The mass spectroscopy gave a molecular mass at m/z 364. This product is the 10a-hydroxy-indolenin 9. The reaction with *t*-butyl hypochlorite (*t*-BuOCl) (8) lead to 10 : the mass spectroscopy gave a molecular mass at m/z 282. The 1H -NMR spectrum was very closed of those of 8 and 9. All the spectroscopic data (ms, hrms, 1H -, ^{13}C -NMR) suggest the chloro-indolenin structure 10.

Scheme 3

In 1982, Hendrickson and de Vries observed that it is impossible to oxidize the central ring of 3 into *ortho*-quinone system : the double bond C8-C9 shows no olefinic character toward oxidants (9). The classical oxidizing reagents (Fremy salt, iodosylbenzene, iodylbenzene ($PhIO_2$), SeO_2 (10), PIFA(6)) to oxidize 6 gave only tars. In 1991 Yusybod described oxidation of styrene into benzil by using $DMSO-I_2$ at reflux temperature (11). In our hands, in these conditions methyl groups of 6 were oxidized into aldehyde functions to give 7 (60%) but no *ortho*-quinone structure was obtained.

In conclusion, this work shows the surprising stability of 6 during the oxidation and confirms the previous observation of Hendrickson (9). Moreover, a new oxidizing indole reagent, *eg* Na_4XeO_6 is proposed for the preparation of indolenin structures.

REFERENCES

- (1) B. Mondovi and P. Riccio, *Adv. Inorg. Biochem.*, **6**, 225 (1985).
- (2) P. M. Gallop, M. A. Paz, R. Fluckiger and H. M. Kagan, *Trends Biochem. Sci.*, **14**, 343 (1989).
- (3) S. Itoh, Y. Fukui, S. Haranon, M. Ogino, M. Komatsu and Y. Oshiro, *J. Org. Chem.* **57**, 4452 (1992); P. R. Sleath, J. B. Noar, G. A. Eberlein and T. C. Bruice, *J. Amer. Chem. Soc.*, **107**, 3328 (1985).
- (4) T. Mulamba, R. El-Bouliki, D. Séraphin, E. Noé, C. Charlet-Fagnière, J. Hénin, J. Laronze, J. Sapi, R. Barret, J. Y. Laronze and J. Lévy, *Heterocycles*, **41**, 29 (1995).
- (5) Y. Oikawa and O. Yonemitsu, *J. Org. Chem.*, **42**, 1213 (1977).
- (6) We gratefully acknowledge L'Air Liquide for the generous gift of sodium perxenate.
- (7) R. Barret and M. Daudon, *Tetrahedron Lett.*, **32**, 2133 (1991).
- (8) J. Mintz and C. Walling, *Org. Synthesis*, **49**, 9 (1969).
- (9) J. B. Hendrickson and J. G. de Vries, *J. Org. Chem.*, **47**, 1148 (1982).
- (10) Fremy salt : H. Zimmer, D. C. Larkin and, S.W. Hogan, *Chem. Rev.*, **71**, 229 (1971); iodosylbenzene : R. Barret and M. Daudon, *Tetrahedron Lett.*, **31**, 4871 (1990); iodylbenzene : R. Barret and M. Daudon, *Synthetic Comm.*, **20**, 2907 (1990); SeO_2 : J. Collonge and P. Boiselle, *Bull. Soc. Chim. Fr.*, 1337 (1956).
- (11) M. S. O. Yusybod and V. D. Filimov, *Synthesis*, 131, (1991).

Received on May 1, 1999